Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions.

نویسندگان

  • Hector Peinado
  • Miguel Quintanilla
  • Amparo Cano
چکیده

The Snail transcription factor has been described recently as a strong repressor of E-cadherin in epithelial cell lines, where its stable expression leads to the loss of E-cadherin expression and induces epithelial-mesenchymal transitions and an invasive phenotype. The mechanisms regulating Snail expression in development and tumor progression are not yet known. We show here that transforming growth factor beta-1 (TGFbeta1) induces Snail expression in Madin-Darby canine kidney cells and triggers epithelial-mesenchymal transitions by a mechanism dependent on the MAPK signaling pathway. Furthermore, TGFbeta1 induces the activity of Snail promoter, whereas fibroblast growth factor-2 has a milder effect but cooperates with TGFbeta1 in the induction of Snail promoter. Interestingly, TGFbeta1-mediated induction of Snail promoter is blocked by a dominant negative form of H-Ras (N17Ras), whereas oncogenic H-Ras (V12Ras) induces Snail promoter activity and synergistically cooperates with TGFbeta1. The effects of TGFbeta1 on Snail promoter are dependent of MEK1/2 activity but are apparently independent of Smad4 activity. In addition, H-Ras-mediated induction of Snail promoter, alone or in the presence of TGFbeta1, depends on both MAPK and phosphatidylinositol 3-kinase activities. These data support that MAPK and phosphatidylinositol 3-kinase signaling pathways are implicated in TGFbeta1-mediated induction of Snail promoter, probably through Ras activation and its downstream effectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transforming growth factor-β signaling in epithelial-mesenchymal transition and progression of cancer

Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that induces growth arrest, tissue fibrosis, and epithelial-mesenchymal transition (EMT) through activation of Smad and non-Smad signaling pathways. EMT is the differentiation switch by which polarized epithelial cells differentiate into contractile and motile mesenchymal cells. Cell motility and invasive capacity are acti...

متن کامل

Analysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1

Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...

متن کامل

Cooperation between snail and LEF-1 transcription factors is essential for TGF-beta1-induced epithelial-mesenchymal transition.

Transforming growth factor beta 1 (TGF-beta1) has been shown to induce epithelial-mesenchymal transition (EMT) during various stages of embryogenesis and progressive disease. This alteration in cellular morphology is typically characterized by changes in cell polarity and loss of adhesion proteins such as E-cadherin. Here we demonstrate that EMT is associated with loss of claudin-1, claudin-2, ...

متن کامل

Transtorming Growth Factor β1 Induces Epithelial-to-Mesenchymal Transition of A549 Cells

Idiopathic pulmonary fibrosis (IPF) comprises an aggregate of mesenchymal cells. However, the cellular origin of these mesenchymal phenotypes remains unclear. Transforming growth factor beta1 (TGF-beta1) has been known as the main cytokine involved in the pathogenesis of IPF. We examined whether the potent fibrogenic cytokine TGF-beta1 could induce the epithelial-to-mesenchymal transition (EMT)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 23  شماره 

صفحات  -

تاریخ انتشار 2003